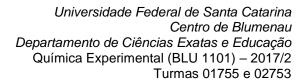


Experiência 4: Cinética de Reações Químicas

1. Introdução

A <u>Cinética Química</u> é a área da química que está relacionada com as velocidades das reações. A velocidade de uma reação química representa a variação na concentração dos reagentes ou produtos por unidade de tempo e é, geralmente, expressa em termos de concentração em quantidade de matéria por segundo (mol L⁻¹ s⁻¹). Para uma reação geral, a velocidade é dada por:

$$aA + bB \longrightarrow cC + dD$$
 Velocidade = $-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$


A <u>lei da velocidade</u> descreve a dependência da velocidade de uma reação em relação à concentração dos reagentes e pode ser descrita como:

A <u>ordem da reação</u> indica como a velocidade da reação pode ser afetada pela concentração de cada reagente (ex: se m=1, a reação é de primeira ordem em relação ao reagente A; se n=2 a reação é de segunda-ordem em relação ao reagente B). A <u>ordem total</u> <u>da reação</u> é a soma das ordens em relação a cada reagente (ex: se m=1 e n=1, então a reação é de segunda ordem como um todo). Os expoentes da ordem de reação são determinados experimentalmente, mas muitas vezes podem estar relacionados com os coeficientes da equação balanceada.

Considere a lei da velocidade a seguir:

Velocidade = k [A] ⁿ	. se n= 0, dobrando [A], não altera a velocidade, pois grandeza			
	elevada à potência 0 é igual a 1.			
	. se n=1, dobrando [A], dobra a velocidade.			
	. se n=2, dobrando [A], quadruplica a velocidade.			

A <u>constante de velocidade</u> fornece informações valiosas sobre a cinética de uma reação química, onde um valor alto da constante indica uma reação rápida. A unidade de uma constante depende da ordem total da reação, sendo que em uma reação de primeira ordem é expressa em **s**⁻¹ e em uma reação de segunda ordem é expressa em **mol**⁻¹ L **s**⁻¹.

Exemplos de lei de velocidade:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$
 Velocidade = $k[N_2O_5]$
CHCl₃(g) + Cl₂(g) \longrightarrow CCl₄(g) + HCl(g) Velocidade = $k[CHCl_3][Cl_2]^{1/2}$
 $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ Velocidade = $k[H_2][I_2]$

O mecanismo de reação é o conjunto de uma ou mais etapas moleculares que explicam como os reagentes se tornam produtos. As etapas individuais em um mecanismo são denominadas de **etapas elementares**. A maior parte dos mecanismos inclui uma etapa que é bem mais lenta do que as demais, denominada de etapa **determinante da velocidade**, a qual governa a lei da velocidade da reação como um todo.

No exemplo a seguir, a etapa 2 é muito mais rápida do que a 1 ($k_2 >> k_1$) e o intermediário $NO_3(g)$ é produzido lentamente na etapa 1 e é imediatamente consumido na etapa 2. Uma vez que a etapa 1 é lenta e a 2 é rápida, a etapa 1 é a determinante da velocidade. Portanto, a velocidade da reação como um todo é igual à velocidade da etapa 1.

Etapa 1:
$$NO_2(g) + NO_2(g) \xrightarrow{k_1} NO_3(g) + NO(g)$$
 (lenta)
Etapa 2: $NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$ (rápida)
Total: $NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$

A <u>velocidade das reações pode ser afetada por diferentes fatores</u>, dentre os quais se encontram o estado físico dos reagentes, a concentração dos reagentes, a temperatura e a presença de catalisadores.

Na presente prática será avaliada a velocidade de reação entre os íons dos reagentes iodeto de potássio (KI) e persulfato de potássio ($K_2S_2O_8$), onde:

$$2\Gamma + S_2O_8^{-2} \rightarrow I_2 + 2SO_4^{-2}$$

As etapas intermediárias seriam:

Para medir o tempo de reação em diferentes concentrações de persulfato e iodeto, a velocidade da reação pode ser acompanhada de modo indireto, através da adição de uma quantidade pequena e conhecida de tiosulfato de sódio $(Na_2S_2O_3)$ e amido (solução indicadora) ao meio reacional. O tiosulfato adicionado reage muito rapidamente com o iodo formado na reação principal, e regenera o iodeto, conforme a seguinte equação:

$$2S_2O_3^{-2} + I_2 \rightarrow 2S_4O_6^{-2} + 2I$$

Essa reação é muito rápida e, por isso, o tiosulfato é consumido com a mesma velocidade de formação do iodo, ou seja, com a mesma velocidade da reação que se deseja estudar. Quando todo o tiosulfato tiver reagido, o iodo que continua a se formar atribui à solução uma coloração azul, devido à presença de amido.

Como se conhece quanto foi adicionado de tiosulfato e também a estequiometria dessa última reação, pode-se determinar quanto foi consumido dos reagentes no intervalo entre o início da reação (mistura dos reagentes) e o aparecimento da coloração azul. Como a

Universidade Federal de Santa Catarina Centro de Blumenau Departamento de Ciências Exatas e Educação Química Experimental (BLU 1101) – 2017/2 Turmas 01755 e 02753

quantidade de tiosulfato é muito pequena, comparada à dos outros reagentes, muito pouco desses reagentes (persulfato e iodeto) são consumidos até que apareça a coloração azul, o que permite considerar que essas concentrações não se alteram significativamente durante o processo, de modo a comprometer os resultados. Como os experimentos são realizados com o mesmo volume total de solução, a coloração azul sempre ocorrerá quando a mesma quantidade de tiosulfato tiver sido consumida. Deste modo, as quantidades dos dois reagentes que reagiram serão iguais, até ao momento do surgimento da cor azul, independentemente das concentrações. O que altera é o intervalo de tempo. Se t for o intervalo entre o instante do início da reação e o aparecimento da coloração azul, a grandeza 1/t será proporcional à velocidade inicial média da reação, porque esta última será uma fração cujo denominador será t e cujo numerador será sempre a mesma variação nas concentrações de persulfato ou de iodeto, em todos os experimentos.

Sugestões de Estudo

- Cinética Química;
- Lei de velocidade.

2. OBJETIVO

Compreender e executar um experimento de cinética química, com ênfase no estudo da equação da velocidade das reações e dos mecanismos da reação, bem como na avaliação dos fatores que influenciam na velocidade das reações químicas.

3. MATERIAIS E SOLUÇÕES

. Termômetro

. 3 Erlenmeyer de 125 mL

. 4 pipetas graduada de $5,0~\mathrm{mL}$

. Conta-gotas (para a solução de $CuSO_4$)

. Béquer de 50 mL (para a solução de $K_2S_2O_8$)

. Bacia com gelo

. Cronômetro ou relógio

. Banho-Maria (~ 45 °C)

. KCl 0,10 mol L⁻¹

 $. K_2S_2O_8 0,05 \text{ mol } L^{-1}$

 $. K_2SO_4 0,05 \text{ mol } L^{-1}$

. KI 0,10 mol L⁻¹

. CuSO₄ 0,10 mol L⁻¹

. $Na_2S_2O_3 0,005 \text{ mol } L^{-1} + \text{amido.}$

4. PROCEDIMENTO

4.1. Ensaios cinéticos 1 a 8

- Separe 8 tubos de ensaio e numere-os de 1 a 8.
- De acordo com o Quadro 1, adicione todas as soluções requeridas a cada tubo de ensaio, exceto a solução de persulfato de potássio. Utilize pipetas graduadas para fazer a transferência dos volumes recomendados no Quadro 1.

Universidade Federal de Santa Catarina Centro de Blumenau Departamento de Ciências Exatas e Educação Química Experimental (BLU 1101) – 2017/2 Turmas 01755 e 02753

- Coloque em um béquer pequeno a quantidade requerida da solução de persulfato de potássio para o <u>tubo de ensaio 1</u>, usando uma pipeta graduada de 5,0 mL.
- Transfira rapidamente a solução de persulfato do béquer para o <u>tubo de ensaio 1</u> contendo as outras soluções e, ao mesmo tempo e acione o cronômetro (ou monitore o tempo em um relógio). Agite o tubo de ensaio regularmente.
- Marque na Tabela 1 o tempo que levou para o aparecimento da coloração azul.
- Meça a temperatura da solução azul e anote na Tabela 1.
- Repita estes procedimentos para os <u>tubos de ensaio 2, 3, 4, 5 e 6</u>, usando as respectivas quantidades requeridas das soluções conforme o Quadro 1.

Observação: No <u>tubo de ensaio 6</u>, adicione 1 gota da solução de CuSO₄ (utilizada como catalisador), imediatamente após a adição da solução de persulfato.

- Para o ensaio cinético 7, aqueça o <u>tubo de ensaio 7</u> contendo as soluções já adicionadas (exceto a solução de persulfato), até atingir uma temperatura próxima a 45 °C, utilizando um Banho-Maria. Proceda, em seguida, a adição da solução de persulfato, agite e cronometre a reação até o aparecimento da coloração azul. Meça a temperatura da solução azul e anote na Tabela 1.
- Para o ensaio cinético 8, resfrie o <u>tubo de ensaio 8</u> contendo as soluções já adicionadas (exceto a solução de persulfato), até atingir uma temperatura próxima a 5 °C, utilizando um banho de gelo. Proceda, em seguida, a adição da solução de persulfato, agite e cronometre a reação até o aparecimento da coloração azul. Meça a temperatura da solução azul e anote na Tabela 1.

Quadro 1. Volumes das diferentes soluções de reagentes utilizadas no estudo cinético da reação do iodeto com o persulfato.

SOLUÇÕES	TUBOS DE ENSAIO (Ensaios Cinéticos)									
	1	2	3	4	5	6	7	8		
KI 0,10 mol L ⁻¹	5,0 mL	2,5 mL	1,0 mL	5,0 mL	5,0 mL	5,0 mL	5,0 mL	5,0 mL		
Na ₂ S ₂ O ₃ 0,005 mol L ⁻¹ + amido	2,5 mL	2,5 mL	2,5 mL	2,5 mL	2,5 mL	2,5 mL	2,5 mL	2,5 mL		
Água deionizada	-	2,5 mL	4,0 mL	2,5 mL	4,0 mL	-	-	-		
$K_2S_2O_8$ 0,05 mol L ⁻¹	5,0 mL	5,0 mL	5,0 mL	2,5 mL	1,0 mL	5,0 mL	5,0 mL	5,0 mL		
CuSO ₄ 0,10 mol L ⁻¹	-	-	-	-	-	1 gota	-	-		
Volume total	12,5 mL	12,5 mL	12,5 mL	12,5 mL	12,5 mL	12,5 mL	12,5 mL	12,5 mL		
Temperatura	ambiente	ambiente	ambiente	ambiente	ambiente	ambiente	~45 °C	~5 °C		

Universidade Federal de Santa Catarina Centro de Blumenau Departamento de Ciências Exatas e Educação Química Experimental (BLU 1101) – 2017/2 Turmas 01755 e 02753

Tabela 1. Resultados obtidos no experimento de estudo cinético da reação do iodeto com o persulfato.

PARÂMETRO	ENSAIO CINÉTICO							
	1	2	3	4	5	6	7	8
Temperatura (°C)								
Tempo (s)								
Velocidade (1/s)								

Questionamentos:

- 1) As concentrações de Γ e de $S_2O_8^{-2}$ influenciaram na velocidade da reação? Discuta e justifique com base nos resultados obtidos.
- 2) As diferentes temperaturas influenciaram na velocidade da reação? Discuta e justifique com base nos resultados obtidos.
- 3) O catalisador influenciou na velocidade da reação? Discuta e justifique com base nos resultados obtidos.